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Teleportation - the transmission and reconstruction of objects over arbitrary distances - is a
spectacular process, which actually has been invented by science fiction authors some decades ago.
Unbelievable as it seems in 1993 a theoretical scheme has been found by Charles Bennett et al. that
predicts the existence of teleportation in reality - at least for quantum systems. This scheme
exploits some of the most essential and most fascinating features of quantum theory, such as the
existence of entangled quantum states. Only four years after its prediction, for the first time quantum
teleportation has been experimentally realized by Anton Zeilinger et al., who succeeded in teleporting
the polarization state of photons. Apart from the fascination that arises from the possibility of
teleporting particles, quantum teleportation is expected to play a crucial role in the construction of
quantum computers in future.

I. INTRODUCTION

A. Motivation

Teleportation is a term created by science fiction
authors describing a process, which lets a person or ob-
ject disappear while an exact replica appears in the best
case immediately at some distant location. The first idea
how the dream of teleportation could be realized in prac-
tice might be the following: From a classical point of view
the object to be teleported can fully be characterized by
its properties, which can be determined by measurement.
To create a copy of the object one does not need the orig-
inal parts and pieces, but all that is needed is to send the
scanned information to the place of destination, where
the object can be reconstructed. Having a closer look at
that scheme, we realize that the weak point is the meas-
uring process. If we want to get a perfect replica of the
object, it would be inevitable to determine the states of
molecules, atoms and electrons - in a word: we would
have to measure quantum properties. But according to
Heisenberg’s uncertainty principle, these cannot be de-
termined with arbitrary precision not even in principle.
We see that teleportation is not practicable in this way.
And even more: it seems as if the laws of quantum me-
chanics prohibit any teleportation scheme in general.

It is the more surprising that in 1993 Charles
H. Bennett et al. have suggested that it is possible to
transfer the quantum state of a particle onto another
provided one does not get any information about the
state in the course of this transformation. The central
point of Bennett’s idea is the use of an essential feature
of quantum mechanics: entanglement [8]. Entanglement
describes correlations between quantum systems much
stronger than any classical correlation could be. With
the help of a so-called pair of entangled particles it is
possible to circumvent the limitations caused by Heisen-
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berg’s uncertainty principle.
Quite soon after its theoretical prediction in 1997

Anton Zeilinger et al. succeeded in the first experimen-
tal verification of quantum teleportation. By producing
pairs of entangled photons with the process of paramet-
ric down-conversion and using two-photon interferometry
for analyzing entanglement, they were able to transfer a
quantum property (the polarization state) from one pho-
ton to another.

Though the prediction and experimental realization of
quantum teleportation are surely a great success of mod-
ern physics, we should be aware of the differences between
the physical quantum teleportation and its science fic-
tion counterpart. We will see that quantum teleportation
transfers the quantum state from one particle to another,
but doesn’t transfer mass. Furthermore the original state
is destroyed in the course of teleportation, which means
that no copy of the original state is produced. This is
due to the no-cloning theorem, which says that it is im-
possible within quantum theory to produce a clone of a
given quantum system [1][9]. Finally we will learn that
teleporting a quantum state has a natural speed limit.
In the best case it is possible to teleport at the speed of
light - in accordance with Einstein’s theory of relativity.

B. Reminder of Basic Concepts

The theoretical scheme of quantum teleportation ne-
cessitates some basic concepts of quantum mechanics. All
above we will deal with two-level quantum systems. For
instance, such a system can be represented by a spin- 1

2
particle or the polarization state of a photon. In order
to stay in a general setting we call the two basis states
|0〉 and |1〉. The general wave function of the two-level
system is the superposition of these states:

|ψ〉 = α|0〉+ β|1〉, (1)

where α and β are two complex numbers satisfying
|α|2 + |β|2 = 1. As the next step we want to consider the
combination of two two-level systems. The wave function
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of such a system might be the following one:

|ψ〉 =
1√
2

(|0〉1|1〉2 − |1〉1|0〉2) , (2)

which is a special superposition of states and an example
for the so-called entangled states or EPR states [10]. As
already mentioned above, entanglement is an essential
feature of quantum mechanics and the reason for this
is the following: The entangled state describes a single
quantum system in an equal superposition of the states
|0〉1|1〉2 and |1〉1|0〉2, and the two particles involved lose
their identities in a certain sense. The entangled state
contains no information on the individual particles; it
only indicates that the two particles will be in opposite
states. This means that as soon as a measurement on
one particle projects it onto, let’s say, |0〉, the state of the
other one must be |1〉, and vice versa. Noting the fact
that Eq. (2) doesn’t impose any restrictions on the spatial
distance between the two entangled quantum systems,
quantum mechanics predicts an instantaneous influence
between two particles, which can be arbitrarily far away
from each other. This effect seems to be unbelievable
and so many distinguished physicists couldn’t accept it;
Einstein among them even called it a ”spooky action at
a distance” [11]. Nevertheless experiments have shown
that this property of entangled states is reality.

Knowing the special features of entangled EPR states,
we want to have a closer look at how entangled systems
are put to work in the theoretical scheme of quantum
teleportation.

II. THE CONCEPT OF QUANTUM
TELEPORTATION

A. Definition of the problem. . .

Suppose that a sender, whom we call ”Alice”, has a
quantum system such as a spin- 1

2 particle or a photon
prepared in a certain quantum state |ψ〉. We assume
that Alice doesn’t know the exact wave function of her
state, but she wants to transfer sufficient information to
a receiver at a distant location, we call him ”Bob”, for
him to make an exact copy of it. If Alice knew the wave
function of her state, this would be sufficient informa-
tion, but in general there is no way to learn it. To make
this point clear, let’s consider a two-level system with its
general wave function

|ψ〉 = α|0〉+ β|1〉, (3)

where α and β are two complex numbers satisfying
|α|2 + |β|2 = 1. A measurement on this quantum system
would lead to a projection onto an eigenstate of the meas-
ured observable. If |ψ〉 isn’t accidentally an eigenstate of
the observable, which is extremely unlikely, Alice has no
chance to learn the exact wave function. We conclude
that measuring |ψ〉 in general leads to a loss of informa-
tion and makes a reconstruction of the state impossible.

So we might think that the only possibility for Alice to
provide Bob with the whole information on |ψ〉 would be
sending the particle itself. This, of course, is the trivial
method, and therefore we want to think of a scenario
which doesn’t allow sending the particle. Let’s say, the
communication channel between Alice and Bob is not
good enough to preserve quantum coherence. Now, what
can Alice’s and Bob’s strategy be?

An answer to this question has been found by Bennett
et al. [2] presented in their article ”Teleporting an Un-
known Quantum State via Dual Classical and Einstein-
Podolsky-Rosen-Channels”. The title of the article gives
an important hind: the information encoded in |ψ〉 can be
divided into two parts, one purely classical and the other
one purely nonclassical. These two parts of information
are send through different channels, and after having re-
ceived both, Bob is able to produce an exact replica of
|ψ〉. To understand what is exactly meant by ”classical”
and ”nonclassical” information, we want to have a closer
look at Bennett’s proposed scheme.

B. . . . and its solution!

Alice has a particle 1 in the initial state

|ψ〉1 = α|0〉1 + β|1〉1. (4)

The key role in the teleportation of this state is played by
an entangled ancillary pair of particles, because this es-
tablishes the nonclassical channel between Alice and Bob.
Alice holds particle 2 and Bob particle 3 (see FIG. 1), to-
gether being the constituents of an EPR singlet state

|Ψ−〉23 =
1√
2

(|0〉2|1〉3 − |1〉2|0〉3) . (5)

(Remember the comments on EPR pairs in Sect. I B.)

1. Nonclassical information transmission

We note that the fact, that Alice and Bob share an
EPR pair, establishes the possibility of nonclassical cor-
relations between them, but the EPR pair does not yet
carry any information about particle 1. This can be
seen, when we consider that the entire system of the
three particles can be described as a pure product state,
|ψ〉1|Ψ−〉23. Obviously, performing a measurement on
either member of the EPR pair doesn’t reveal any infor-
mation on particle 1. Our aim is now to couple particle
1 with the EPR pair. This can be done, when Alice per-
forms a measurement on the joint system consisting of
particle 1 and particle 2 (her EPR particle). This so-
called Bell-state measurement should project the system
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FIG. 1: Theoretical scheme. Alice has a quantum system,
particle 1, in an initial state, which she wants to teleport to
Bob. Alice and Bob also share an ancillary entangled pair,
particle 2 and 3, produced by a so-called Einstein-Podolsky-
Rosen (EPR) source. Alice performs a joint Bell-state meas-
urement (BSM) on particles 1 and 2, projecting them onto one
of the four possible Bell-states. After Alice having sent the
outcome of her BSM to Bob as a piece of classical information,
he can perform a unitary transformation (U) on particle 3,
which changes its state into the initial state of particle 1.

onto one of the four maximally entangled Bell-states:

|Ψ±〉12 =
1√
2

(|0〉1|1〉2 ± |1〉1|0〉2) ,

|Φ±〉12 =
1√
2

(|0〉1|0〉2 ± |1〉1|1〉2) . (6)

These four states form a complete orthonormal basis, the
Bell basis, for particles 1 and 2.

The complete state of the three particles before Alice’s
measurement is

|Ψ〉123 =
α√
2

(|0〉1|0〉2|1〉3 − |0〉1|1〉2|0〉3)

+
β√
2

(|1〉1|0〉2|1〉3 − |1〉1|1〉2|0〉3) . (7)

In this equation, each product | 〉1| 〉2 can be expressed
in terms of the Bell basis, and so we can rewrite Eq. (7)
as

|Ψ〉123 =
1
2

[ |Ψ−〉12 (−α|0〉3 − β|1〉3) + |Ψ+〉12 (−α|0〉3 + β|1〉3) + |Φ−〉12 (α|1〉3 + β|0〉3) + |Φ+〉12 (α|1〉3 − β|0〉3)
]
.

(8)

From this equation we can conclude that, regardless of
the unknown state |ψ〉1, the four possible measurement
outcomes of Alice’s Bell-state measurement are equally
likely, each occurring with probability 1/4. Moreover,
Bob’s particle 3 is influenced by the measurement. Quan-
tum physics predicts that once the particles 1 and 2 are
projected onto one of the four Bell-states, particle 3 is
instantaneously projected into on of the four pure states
superposed in Eq. (8). Denoting

|0〉 ≡
(

1
0

)
and |1〉 ≡

(
0
1

)

these four pure states are, respectively,

−|ψ〉3 ≡ −
(

α
β

)
,

( −1 0
0 1

)
|ψ〉3,

(
0 1
1 0

)
|ψ〉3,

(
0 −1
1 0

)
|ψ〉3. (9)

2. Classical information transmission

From Eq. (9) we see that each possible resultant state
for Bob’s EPR particle is related in a simple way to the

original state |ψ〉1 which Alice wanted to teleport. In case
of the first outcome, Alice measures |Ψ−〉12 and Bob’s
state is the same as the original state except for an irrele-
vant phase factor, so Bob needs to do nothing further to
produce a replica of Alice’s unknown state. In the three
other cases, Bob must apply one of the unitary transfor-
mations given in Eq. (9) to convert the state of particle 3
into the original state of particle 1. The important point
now is, that Bob can just apply the right transforma-
tion, if he receives the result of the Bell-state measure-
ment performed by Alice. And this piece of information,
which is crucial for a successful teleportation, can only
be transmitted via a classical communication channel. So
the maximum speed of quantum teleportation is given by
the speed of light, as we would have expected. Neverthe-
less quantum teleportation could happen over arbitrary
distances: the nonclassical information transfer happens
instantaneously regardless of the distance between the
EPR particles; the duration of the classical information
transmission depends on the method and the distance.

While Bob, after a successful teleportation, has an
exact replica of the initial state |ψ〉1, Alice, on the
other hand, is left with particles 1 and 2 in one of the
states |Ψ±〉12 or |Φ±〉12, without any trace of the original
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FIG. 2: Experimental setup. A pulse of ultraviolet light passes
through a non-linear crystal and creates the ancillary pair of
entangled photons 2 and 3. The pulse is reflected by a mirror
and again passes through the crystal creating another pair of
photons. One of them will be prepared in the initial state of
photon 1, the other one can serve as a trigger, indicating that
a photon to be teleported is on its way. Alice looks for coinci-
dences behind the beam splitter (BS) where the initial photon
1 and photon 2 are superposed. If they are indistinguishable,
they interfere. After having received a classical information
that Alice measured a coincidence at the detectors f1 and f2
corresponding to the |Ψ−〉12 Bell-state, Bob knows that pho-
ton 3 has been converted into the initial state of photon 1. He
checks this by using polarization analysis with the polarizing
beam splitter and the detectors d1 and d2.

state |ψ〉1. Therefore particle 3, now being in the state
|ψ〉3 = α|0〉3 + β|1〉3, is not a clone of particle 1, but can
be legitimately regarded as the teleported particle 1.

We conclude the theoretical discussion of quantum
teleportation with the remark that the whole scheme
presented above is only possible, because the Bell-state
measurement does not reveal any information on the
properties of any of the particles. So, we’ve surmounted
the problem we discussed in Sect. II A.

III. EXPERIMENTAL REALIZATION

The core of quantum teleportation is the production
and measurement of entangled states; these are the most
challenging tasks for an experimental realization limiting
the range of possible two-level systems. In 1997 Zeilinger
et al. [3–6] succeeded in the first experimental demonstra-
tion of quantum teleportation transferring polarization
states from one photon onto another. At that time there
were only very few experimental techniques allowing the
preparation of entangled states, and there was no ex-
perimentally realized procedure to identify all four Bell-
states for any quantum system. However, entangled pairs
of photons could readily be generated by so-called type-
II parametric down-conversion and be projected onto at

least two of the four Bell-states using two-photon inter-
ferometry.

By the time the range of experimental realizations has
broadened, because new entanglement techniques have
been found (e.g. atom entanglement based on cavity
quantum electrodynamics, ion entanglement in electro-
magnetic Paul traps [6, 7], etc). Some of them even make
unconditional teleportation feasible allowing the identi-
fication of every Bell-state. Nevertheless we want to re-
port on Zeilinger’s experiment in some detail, because
this group pioneered the field of experimental quantum
teleportation.

A. A Source of Entangled Photons

The process of spontaneous parametric down-
conversion provides mechanisms by which pairs of entan-
gled photons can be produced with reasonable intensity
and in good purity. In this technique, inside a crystal
with nonlinear electric susceptibility, an incoming pump
photon can decay with relatively small probability into
two photons in a way that energy and momentum inside
the crystal are conserved:

ωp = ω1 + ω2

kp = k1 + k2

Zeilinger et al. used so-called type-II parametric down-
conversion. In this process the polarization entangled
state is produced directly out of a nonlinear BBO-crystal
(beta barium borate). If an incoming pump photon
decays spontaneously, the two down-converted photons
are polarized orthogonally, but have the same energy [12]
(see Fig. 3). Each photon is emitted into a cone such that
the momenta of the two photons always add up to the
momentum of the pump photon. The essential part of
the setting are the intersection lines of the cones, because
along these lines, the polarization of neither photon is de-
fined (see Fig. 4). We only know that the two photons
have to have different polarizations. This is the essential
feature to achieve entanglement, for a measurement on
each of the photons separately is totally random and gives
vertical or horizontal polarization with equal probability.
But once a photon, e.g. photon A, is measured, the po-
larization of the other photon is orthogonal! If we choose
|H〉 and |V 〉 as a basis, we get the following entangled
state in the case of type-II parametric down-conversion
[13]:

|ψ〉AB =
1√
2

(|H〉A|V 〉B − |V 〉A|H〉B) . (10)

B. The Bell-state Analysis

We can see from Fig. 2 that not only the entangled
photon pair is produced in the BBO-crystal, but also an-
other pair of photons. The upper photon of this second



5

FIG. 3: Principle of type-II parametric down-conversion. In-
side a nonlinear crystal (here: beta barium borate (BBO))
an incoming pump photon can decay spontaneously into two
photons. These photons are polarized orthogonally to each
other. Each photon is emitted into a cone and the photon
on the top cone is vertically polarized while its counterpart
exactly opposite in the bottom cone is horizontally polarized.
Along the intersection line of the two cones the polarizations
are undefined; all that is known is that they have to be ortho-
gonal, which results in polarization entanglement between the
two photons in beams A and B.

FIG. 4: Type-II down-conversion light as seen through a
narrow-band filter. The two rings are the ordinary and extra-
ordinary cones of light rays. Along the intersecting directions,
which are cut out by irises, we observe unpolarized light.

pair is prepared in a specific polarization state by the po-
larizer, then being photon 1 to be teleported, whereas the
lower one can serve as a trigger, indicating that photon
1 is under way.

Now we arrive at the problem of performing a Bell-
state analysis on photon 1 and photon 2. To achieve
projection of photons 1 and 2 onto a Bell-state, we have
to make them indistinguishable. To achieve this indistin-

FIG. 5: Standard beam splitter. The beam splitter transforms
two input spatial modes (a, b) into two output spatial modes
(c, d).

FIG. 6: Two photons incident on the beam splitter, one from
each side. There are four possibilities how the two photons
can leave the beam splitter.

guishability, we exploit the two-photon interference effect
at a 50:50 standard beam splitter. The beam splitter has
two spatial input modes a and b (see Fig. 5).

Quantum mechanically the action of the beam splitter
on the input modes can be written as

|a〉 → i√
2
|c〉+

1√
2
|d〉,

|b〉 → 1√
2
|c〉+

i√
2
|d〉, (11)

where, e.g. |a〉 describes the spatial quantum state of a
photon in input mode a. Eq. (11) describes the fact that
the photon can be found with equal probability (50%)
in either of the output modes c and d, no matter what
the input mode was. The factor i corresponds physically
to a phase jump upon reflection at the semi-transparent
mirror [14].

Now we want to consider what happens at the beam
splitter with two incident photons, say, photon 1 in in-
put beam a and photon 2 in input beam b. Suppose
that photon 1 is in polarization state α|H〉1 + β|V 〉1
and photon 2 in γ|H〉2 + δ|V 〉2 (with |α|2 + |β|2 = 1
and |γ|2 + |δ|2 = 1). Each photon has the same 50:50-
probability of being transmitted or reflected. Thus four
different possibilities arise (see Fig. 6):

(1) Both photons are reflected, (2) both photons are
transmitted, (3) the upper photon is reflected, the lower
one is transmitted, and (4) the upper one is transmitted
and the lower one is reflected. Each case occurs with the
same probability, and one has to investigate now, whether
any interference effects are observed. For distinguishable
photons, which behave therefore like classical particles,
no interference arises and we thus arrive at the prediction
that in two of the cases, i.e. with probability p = 0.5, the
two particles end up in different output ports and, with
the probability p = 0.25, both end up in the upper output
beam and, with the same probability p = 0.25, they end
up in the lower output beam.
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Let us now assume that the photons are quantum
mechanically indistinguishable. Then we can’t, not even
in principle, decide which of the incident particles ended
up in a given output port. Therefore we have to con-
sider coherent superpositions of the amplitudes for these
different possibilities. We start with the input state

|ψi〉 = (α|H〉1 + β|V 〉1) |a〉1 (γ|H〉2 + δ|V 〉2) |b〉2. (12)

When passing the beam splitter the spatial modes under-
go the transformation given by Eq. (11). So the state in
Eq. (12) evolves into

|ψf 〉12 = 1√
2

(α|H〉1 + β|V 〉1) (i|c〉1 + |d〉1)
× 1√

2
(γ|H〉2 + δ|V 〉2) (|c〉2 + i|d〉2) (13)

Because photons 1 and 2 are indistinguishable after pass-

ing through the beam splitter, the total two-photon state,
including both the spatial and the polarization part, has
to obey bosonic quantum statistics. This means that the
outgoing state has to be symmetric under exchange of
the labels 1 and 2. So we symmetrize the state |ψf 〉12 by
writing

|ψf 〉 =
1√
2

(|ψf 〉12 + |ψf 〉21) (14)

with

|ψf 〉21 = 1√
2

(α|H〉2 + β|V 〉2) (i|c〉2 + |d〉2)
× 1√

2
(γ|H〉1 + δ|V 〉1) (|c〉1 + i|d〉1) . (15)

After insertion of Eqs. (13) and (15) into Eq. (14) and
some calculation, we get

|ψf 〉 = 1
2
√

2
[(αγ + βδ) (|H〉1|H〉2 + |V 〉1|V 〉2) · i (|c〉1|c〉2 + |d〉1|d〉2)

+ (αγ − βδ) (|H〉1|H〉2 − |V 〉1|V 〉2) · i (|c〉1|c〉2 + |d〉1|d〉2)
+ (αδ + βγ) (|H〉1|V 〉2 + |V 〉1|H〉2) · i (|c〉1|c〉2 + |d〉1|d〉2)
+ (αδ − βγ) (|H〉1|V 〉2 − |V 〉1|H〉2) · (|d〉1|c〉2 − |c〉1|d〉2)]. (16)

Of course, this equation requires some discussion, but we
will see that it allows us to easily project the two-photon
state onto two of the four Bell-states

|Ψ±〉12 =
1√
2

(|H〉1|V 〉2 ± |V 〉1|H〉2) ,

|Φ±〉12 =
1√
2

(|H〉1|H〉2 ± |V 〉1|V 〉2) . (17)

It is just these states that we find in the middle column of
Eq. (16). Having a closer look at the last line of Eq. (16),
we see the state |Ψ−〉12 and realize that the two photons
have this state, if, and only if they proceed in differ-
ent output modes after the beam splitter. So Bell-state
|Ψ−〉12 can clearly be identified, if detectors on both sides
of the beam splitter fire simultaneously. For a full Bell-
state analysis, we need a way to distinguish between the
three other states |Ψ+〉12, |Φ−〉12 and |Φ+〉12. But we
find, that it is only the state |Ψ−〉12 which can addition-
ally be identified, because, while emerging on the same
side of the beam splitter, the photons still are polarized
orthogonally. Thus we have seen that two-photon inter-
ference effects allow us to clearly identify two of the four
Bell-states via two-fold coincidence analysis at detectors
behind the beam splitter.

C. The Experiment

For reasons of practical convenience Zeilinger et al.
only analyzed the projection onto |Ψ−〉12. As we found
out in the previous section, this corresponds to detecting
a coincidence between the two detectors at the different
output ports of the beam splitter (in Fig. 2 see detec-
tors f1 and f2), and due to Eq. (16) this means that
in one out of four cases a projection onto |Ψ−〉12 takes
place. Furthermore, we have already derived in Sect.
II B 1 that projecting the photons 1 and 2 onto |Ψ−〉12
instantaneously transforms photon 3 into the initial state
of photon 1. We note with emphasis that although only
one of the four Bell-states is identified in the experiment,
teleportation is successfully achieved nevertheless, albeit
only in a quarter of the cases.

The experimental Bell-state analysis is an extremely
sensitive point, because it relies on the interference of
two independently created photons. A projection onto
a Bell-state can thus only be successful, if good spatial
and temporal overlap at the beam splitter is guaranteed.
That means all kinds of Welcher-Weg-information for the
photons 1 and 2 must be erased. This is achieved by in-
creasing the coherence times of the interfering photons
to become much longer than the time interval within
which they are created. In the experiment ultraviolet
laser pulses with a duration of 200fs are used to create
the photon pairs. In front of the detectors f1 and f2 nar-
row bandwidth filters (∆λ = 4.6nm) are placed. These
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FIG. 7: Theoretical prediction for the three-fold coincidence
probability between the two Bell-state detectors (f1, f2) and
the detectors analyzing the teleported state. The signature of
teleportation of a photon polarization state at +45◦ is a dip
to zero at zero delay in the three-fold coincidence rate with
the detector analyzing -45◦ (d1f1f2) (a) and a constant value
for the detector analyzing +45◦ (d2f1f2) (b). The shaded area
indicates the region of teleportation.

produce a coherence time of about 500fs, which is suffi-
ciently longer than the pump pulse duration.

To prove experimentally that an arbitrary quantum
state can be teleported, one has to show that telepor-
tation works on a complete basis, i.e. a set of states
into which any other state can be decomposed. A basis
for polarization states has just two components, for ex-
ample one could choose horizontal and vertical polariza-
tion. But because horizontal and vertical polarization are
somehow preferred directions in the experimental setup,
for the sake of greater generality, Zeilinger et al. demon-
strated teleportation for the two states linearly polarized
at -45◦ and +45◦ [15].

D. The Results

In the first experiment photon 1 was polarized at +45◦.
Teleportation should work as soon as photon 1 and pho-
ton 2 are detected in the |Ψ−〉12 state, which occurs in
one of four cases. The |Ψ−〉12 state is identified by record-
ing a coincidence between the two detectors f1 and f2,
placed behind the beam splitter (see Fig. 2).

If a f1f2 coincidence is detected, then photon 3 should
be polarized at +45◦. The polarization of photon 3 is ex-
perimentally checked by passing it through a polarizing
beam splitter selecting +45◦ and -45◦ polarization. To
demonstrate teleportation only detector d2 at the +45◦
output should fire, f1f2 coincidence provided. So, record-
ing a three-fold coincidence d2f1f2 (+45◦ analysis) to-
gether with the absence of a three-fold coincidence d1f1f2

FIG. 8: Experimental results. Measured three-fold coincidence
rates d1f1f2 (-45◦) and d2f1f2 (+45◦) in the case that the
photon state to be teleported is polarized at +45◦ ((a) and
(b)) or at -45◦((c) and (d)). The coincidence rates are plotted
as a function of the delay between the arrival of photon 1 and
2 at Alice’s beam splitter. These data, compared with Fig. 7,
confirm teleportation for an arbitrary state.

is a proof that the polarization of photon 1 has been tele-
ported to photon 3.

The temporal overlap between photons 1 and 2 is
changed in small steps by changing the delay between
the first and second down-conversion which is achieved
by translating the retroreflection mirror (see Fig. 2). In
this way the region of temporal overlap can be scanned.

Outside the region of teleportation photon 1 and 2 each
will go either to f1 or to f2 independent from each other.
The probability of having a coincidence between f1 and f2
is therefore 50% (as deduced in Sect. III B), which is twice
as high as inside the region of teleportation. Then photon
3 should not have a well-defined polarization, because
it is part of an entangled pair. Therefore, d1 and d2
both have a 50% chance of receiving photon 3. This
yields a 25% probability both for the -45◦ analysis and
for the +45◦ analysis outside the region of teleportation.
On the other hand, successful teleportation of the +45◦
state is characterized by a decrease to zero in the -45◦
analysis and a constant value in the +45◦ analysis. The
above argument is summarized in Fig. 7 as a theoretical
prediction in case teleportation works as expected.

If teleportation didn’t work as expected, the prediction
would be different. In any case, at zero delay there is
a decrease to half in the coincidence rate for the two
detectors f1 and f2 of the Bell-state analyzer. But if
the polarization of photon 3 was completely uncorrelated
to the others, the graphs of the three-fold coincidence
should also show this dip to half in both the -45◦ and the
+45◦ analysis.

The experimental results of Zeilinger et al. are pre-
sented in Fig. 8. Comparing the graphs with the the-
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oretical prediction of Fig. 7, we can state a very good
agreement. Thus quantum teleportation is experimen-
tally proven.

IV. SUMMARY AND OUTLOOK

In this short review on quantum teleportation we de-
duced from the basic principles of quantum mechanics
that it is possible to transfer the quantum state from one
particle onto another over arbitrary distances. To do so,
we need an entangled EPR pair of particles 2 and 3 which
the sender and the receiver share. The sender has to per-
form a joint Bell-state measurement on the particle 1 to
be teleported and his EPR particle 2. This Bell-state
measurement instantaneously influences the EPR par-
ticle 3 of the receiver in a nonclassical way. To complete
the teleportation the receiver must be informed about
the result of the Bell-state measurement via a classical
communication channel. Due to this information, he can
apply a unitary transformation resulting in his particle
3 being in the state of the original particle. This is the
theoretical scheme of quantum teleportation in brief.

As an experimental elaboration of that scheme we dis-
cussed the teleportation of polarization states of photons.
But quantum teleportation is not restricted to that sys-
tem at all. One could imagine entangling photons with

atoms or photons with ions, and so on. Then telepor-
tation would allow us to transfer the state of, for ex-
ample, fast decohering, short-lived particles onto some
more stable systems. This opens the possibility of quan-
tum memories, where the information of incoming pho-
tons could be stored on trapped ions, carefully shielded
from the environment. With this application we are in
heart of quantum information processing. But quantum
teleportation is not only an important and promising in-
gredient for those tasks. It also allows new types of ex-
periments to check the very basic principles of quantum
mechanics. As an arbitrary state can be teleported, so
can the fully undetermined state of a particle which is
member of an entangled pair. By doing so, one can trans-
fer entanglement between particles (entanglement swap-
ping), and, for example, perform a test of Bell’s theorem
on particles which do not share any common past. This
is a new step in the experimental investigation of the
features of quantum mechanics.
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